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Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent
by radiation damping. With the advent of high power high irradiance lasers it has become possible to generate
focused laser irradiances where electrons interacting with the laser become highly relativistic over very short
time and spatial scales. By focusing petawatt class lasers to very small spot sizes the amount of radiation
emitted by electrons can become very large. Resultingly, the damping of the electron motion by the emission
of this radiation can become large. In order to study this problem a code is written to solve a set of equations
describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the
equation of motion of an electron including radiation damping under the influence of electromagnetic fields is
derived from the Lorentz-Dirac equation treating the damping as a perturbation. We use this equation to
integrate forward in time and use the Lorentz-Dirac equation to integrate backward in time. We show that for
very short wavelength electromagnetic radiation deep in the quantum regime at high irradiances differences
between the perturbation equation and Lorentz-Dirac can be seen. However, for electron motion in the classical
regime the differences are negligible. For electron motion in the classical regime the first order damping
equation is found to be very adequate.
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I. INTRODUCTION

With the advent of petawatt level high power short pulse
lasers it may become possible via strong focusing to extend
the irradiance to levels close to 1022 W/cm2 [1]. At such an
irradiance electrons can theoretically reach high energies.
Under such extreme conditions the effect of radiation damp-
ing on the electron motion in the intense wave can become
large [2]. In addition, by using counter-propagating laser
pulses irradiances reaching the Schwinger limit, 1029 W/cm2

could be achieved with current lasers[3]. Taking into ac-
count coherent radiation effects the damping could be strong
even for relatively low irradiance laser pulses interacting
with clusters[4]. Under most conditions here on the Earth
radiation damping is usually a small perturbation. Even with
current high energy storage rings the strength of the damping
is small [5]. So radiation damping has been verified only
under conditions where it is small. By using high irradiance
lasers we can examine the dynamics of electrons under
strong damping conditions. In this paper we examine the
effects of radiation damping on a single electron under the
influence of a strong electromagnetic wave. The equations of
motion describing the damping are solved numerically. With
the advent of ultra-high irradiance lasers it has become pos-
sible to probe the boundaries of classical electrodynamics.

II. RADIATION DAMPING

Radiation damping or radiation reaction occurs when an
electron is accelerated. When the electron is accelerated, it

emits radiation. This radiation causes the electron to lose its
energy. Under most circumstances the amount of radiation
emitted is very small and represents a small perturbation to
the electron motion. However, this is an important problem.
Radiation damping limits the maximum energy which elec-
trons can be economically stored in a storage ring due to
energy losses from the radiation emitted[5]. The problem of
radiation damping was one of the causes for the development
of quantum theory. In the classical model of an atom an
electron circulating around the nucleus would lose energy so
that it would eventually spiral in to the center. Nonrelativistic
equations describing the effects of radiation damping have
been around for nearly a hundred years[6,7]. The relativis-
tically covariant form of the equation of motion of a radiat-
ing electron was first derived by Dirac[8]:

dui

ds
=

e

mc2Fikuk +
2e2

3mc2gi , s1d

gi = Fd2ui

ds2 − uiukd2uk

ds2 G , s2d

whereui is the four velocity,gi is the damping term, andFik

is the electromagnetic field tensor.
This equation is sufficient to describe the damping of a

relativistic electron interacting with an electromagnetic field.
However, from a mathematical as well as numerical point of
view there are difficulties. Since there are second order de-
rivatives in the velocity, three initial conditions are necessary
to solve the equations of motion. If the equations are inte-
grated forward in time, there is an exponential blowup in the
energy of the electron even if there is no electromagnetic
field present. This problem deals with some of the underlying
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inconsistencies of electromagnetic theory[9]. In order to
avoid this problem the equations are integrated backwards in
time [10] and the acceleration is required to vanish at infinity
[11]. However, for numerical simulation purposes this is dif-
ficult as we need to know the final conditions in order to do
this. Another option is to re-express the damping term in
terms of the fields[9]. This can be done through a perturba-
tion expansion of the equation of motion. If we assume that
the damping termgi in Eq. (1) is a small perturbation, then to
zeroth order the acceleration can be described by[9]

Sdui

ds
D

0
=

e

mc2Fikuk, s3d

where we have used the subscript 0 to specify the zeroth
order term. The equation with damping is then included by
using this equation in the damping termgi in Eq. (2):

Sdui

ds
D

1
= Sdui

ds
D

0
+

2e2

3mc2g0
i , s4d

g0
i = FSd2ui

ds2 D
0

− uiukSd2uk

ds2 D
0
G , s5d

where the subscript 1 refers to the first order term. The
damping force is now expressed in terms of electromagnetic
fields only. The resulting equation can now be integrated
forward in time. Writing everything in terms of fields for the
damping force we get[9]

g0
i = F e

mc2

]Fik

]xl uluk + S e

mc2D2

FikFklu
l

− S e

mc2D2

sFkmukdsFmlulduiG . s6d

Explicitly the equation of motion becomes

dgb

dt
=

e

mc
sE + b Ã Bd +

2e2

3mc2g0, s7d

and the explicit expression for the spatial part of the damping
force is [9]

g0 =
e

mc2gS ]

]t
+ v · = DsE + b Ã Bd + S e

mc2D2

cfsb ·EdE

+ sE + b 3 Bd Ã Bg − S e

mc2D2

g2cbfsE + b Ã Bd2

− sb ·Ed2g. s8d

The Lorentz-Dirac equation is the equation of motion for
a point particle. This first order equation, the so called
Landau-Lifshitz equation, has been both proposed as the ex-
act equation of motion for a point particle[12] and the equa-
tion of motion for an electron with structure[13]. This equa-
tion avoids the preacceleration problem of the Lorentz-Dirac
equation, however, suffers from a very small departure from
the correct rate of radiation[14].

Higher order terms can be obtained by continuing the pre-
vious procedure. We can go to second order to obtain

Sdui

ds
D

2
= Sdui

ds
D

1
+

2e2

3mc2g1
i , s9d

g1
i = FSd2ui

ds2 D
1

− uiukSd2uk

ds2 D
1
G . s10d

Re-expressing this second order equation in terms of just the
fields we get

Sdui

ds
D

2
=

e

mc2Fikuk +
2e2

3mc2g0
i + S 2e2

3mc2D2

g1
i , s11d

whereg0
i is from Eq. (6) and g1

i is a large expression con-
taining second order corrections. From Eq.(11) we can see
that the second order terms are smaller than the first order
terms by a factor ofre where re is the classical electron
radiuse2/mc2.

We can estimate the regime where radiation damping be-
comes large compared to the Lorentz forcefL by estimating
the strength of the largest damping term, the third term, of
fRD in Eq. (8) [2,9]:

fRD ,
2e2v0

2g2a0
2

3c2 , s12d

fL = mcv0a0, s13d

wherev0 is the laser frequency,g is the relativistic factor of
the electron, anda0 is the normalized laser amplitude
eE0/mcv0 whereE0 is the peak laser amplitude. The ratio is

fRD

fL
,

2

3

rev0

c
g2a0. s14d

Assuming an initially stationary electron’s energy increases
as a0

2/2 and counter-propagates with respect to the laser
pulse, the radiation damping force can be significant at laser
irradiances above 531021 W/cm2 for a laser of wavelength
0.88mm. Figure 1 shows a plot of the ratiofRD/ fL verses
irradiance assuming the initially stationary electron energy
scales asa0

2/2 anda0. The different scalings in the electron
energy is due to the fact that in laser-plasma interactions the
energy can scale differently from the ideal plane wave result
of a0

2/2. We can see from the figure that at irradiances above
roughly 1022 W/cm2 the damping can become significant

FIG. 1. The ratio between the damping forcefRD and Lorentz
force fL versus irradiance for different scalings of the electron
energy.
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even for thea0 scaling. This has been shown by particle-in-
cell simulations incorporating the largest term in the radia-
tion reaction force in Eq.(6) where damping was found to
become significant above 531022 W/cm2 [2]. Different
scalings can occur infRD/ fL due to mostly co-propagation of
the electrons, collective plasma effects, radiation effects, and
quantum effects[4].

It can be seen in Eq.(14) that the damping can become
large wheng@1, a0@1, and the laser wavelength isl0
,Osred. In these regimes the assumption that the damping is
a perturbation may be limited. Since the damping can be-
come significant, we examine whether higher order terms in
the expansion are necessary in the description of the damp-
ing.

In order to investigate the regimes where higher order
effects might play a role, we additionally use the Lorentz-
Dirac equations of motion, Eqs.(1) and(2). We first integrate
forward in time using the first order damping equation, Eqs.
(7) and (8). After the electron has passed through the laser
pulse we use the final position, velocity, and acceleration as
the initial conditions for the Lorentz-Dirac equation and in-
tegrate backwards in time. Rewriting Eqs.(1) and(2) we get

d2ui

ds2 = S 2e2

3mc2D−1Sdui

ds
−

e

mc2FikukD + ui u
k

ds

duk

ds
. s15d

Large differences between the initial conditions of the elec-
tron and the final condition of the backwards integrated elec-
tron will indicate that higher order effects are needed.

Since higher order terms are smaller than the first order
terms by a factor ofre, significant effects may occur when
the wavelength of the radiation is shortl0,Osred.

However, when the wavelength of the radiation becomes
short we must take care about quantum kinematic effects.
These effects become important when the wavelength of the
radiation becomes comparable to the Compton wavelength
of the electron in it’s rest framel0,lC wherelC=h/mec.
Using Doppler shift formulas this condition can be rewritten
as

l0 ù lCgs1 − b cosud, s16d

whereu is the angle between the radiation propagation di-
rection and the direction of the electron. For counter-
propagating lasers and electrons this becomes

l0 ù lCgs1 + bd < 2glC, s17d

and for co-propagating lasers and electrons this becomes

l0 ù lCgs1 − bd <
lC

2g
. s18d

For high energy electronssg@1d only long wavelengths are
suitable in the classical description for counter-propagation.
In contrast, for co-propagation the restriction is eased and we
can go to short wavelengths.

III. RESULTS

We calculated the interaction of a single electron with a
Gaussian laser pulse of the form

Esx,td = ẑE0hsfdsinsfd, s19d

Bsx,td = − ŷE0hsfdsinsfd, s20d

wheref=v0st−x/cd, v0 is the laser frequency,

hsfd = expF− S f

v0Dt
D2G , s21d

and Dt is the pulse width. A Gaussian pulse was chosen to
assure that the acceleration far enough away from the laser
pulse approaches zero. This is the asymptotic condition
where the acceleration is required to vanish after a long time
which ensures a unique solution to the Lorentz-Dirac equa-
tion [11].

Equation(7) with Eqs.(8) and(15) are integrated in time
using an adaptive Runge-Kutta integration scheme[15].

Figure 2 shows the interaction of a laser pulse of irradi-
ance 531022 W/cm2 with a wavelength ofl0=1 mm and
pulse width ofDt=20 fs counter propagating with an elec-
tron of energy 150 MeV. These are parameters similar to
those in previous one dimensional simulations[2]. The laser
pulse is propagating from the left to the right and the elec-
tron, which starts atx/l0 andz/l0 equals zero, is propagat-
ing from the right to the left. The figure shows the trace of
the electron’s trajectory with damping(solid line) and with-
out damping(dotted line). It can be seen that the oscillations
of the electron in the direction of the laser electric field are
larger than that without damping. This is due to the fact that
the electron is losing energy as it propagates due to radiation
damping. The amount of energy lost can be seen in Fig. 3. In
the figureg is plotted versusx/l0. We can see that in the
case of damping more than 80% of the electron’s energy is
lost in the form of radiation. However, when we compare the
difference between the first order damping and Lorentz-
Dirac backward integrations the differences between the par-
ticle motion are insignificant. This can be attributed to the
fact that the Doppler shifted wavelength of the laser is large
compared to the classical electron radius. The higher order

FIG. 2. Trace of the electron motion in thex-z plane where the
electron is propagating to the left and the laser is propagating to the
right. The solid line is for damping and the dotted line is no
damping.
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corrections to the radiation reaction force are smaller than
the first order terms by a factor of the classical electron ra-
dius.

At very short wavelengths differences between the first
order and Lorentz-Dirac equations of motion were found, but
only for l0!lC which is far into the quantum regime where
these classical equations are of questionable validity. For
l0.lC no significant differences between the first order and
Lorentz-Dirac equations were found.

Figure 4 shows thex-z motion of an initially stationary
electron interacting with a laser of irradiance 5.5
31022 W/cm2, pulse durationDt=2310−22 seconds, and
wavelengthl0=10−12 cm wherea0=2310−5. Integrated par-
ticle motions for the first order damping and Lorentz-Dirac
equations of motion are indicated by the solid and dotted
lines, respectively. The laser pulse is propagating from the
left to the right and the electron starts atx/l0 and z/l0

equals zero. Figure 5 shows thex-px motion of the electron
where the solid and dotted lines refer to the first order damp-
ing and Lorentz-Dirac equation solutions, respectively. It can
be seen that the electron motion spans only a very small
fraction of the laser wavelength.

It can be seen that in the case of the Lorentz-Dirac equa-
tion that the electron which was initially stationary in the
case of the first order damping equation has an initial mo-
mentum in the +x direction. When we examine the simula-
tion results, we see that the electron which is pushed using
the first order damping equation of motion is accelerated
more strongly by the laser pulse. From a physical point of
view this seems to indicate that the cross section in this case
is larger than in the Lorentz-Dirac equation. This would sup-
port the view that the first order damping equation of motion
gives the electron structure beyond that of a point particle.
Since these parameters are deep within the quantum regime,
both equations of motion are of questionable applicability.
However, from a theoretical point of view it does shed light
on the different characteristics of the equations of motion.

IV. CONCLUSIONS

We have performed numerical calculations in the case of
large damping in the motion of an electron in a very strong
laser pulse. By using both the first order damping equation
and the Lorentz-Dirac equation of motion we have shown
that higher order damping effects do not play a role in the
classical regimesl0.lCd. However, deep into the quantum
regime sl0< re!lCd higher order damping effects become
apparent. Since this occurs in the quantum regime, the valid-
ity of the damping equations are questionable. For electron
motion in the classical regime the first order damping equa-
tion is found to be very adequate.

Although the electron has been measured in accelerator

FIG. 3. The trace of the electron motion in thex-g plane where
the electron is propagating to the left and the laser is propagating to
the right. The solid line is for damping and the dotted line is no
damping.

FIG. 4. Trace of the electron motion in thex-z plane where the
electron is initially stationary and the laser is propagating in thex
direction before they interact. The solid line is for first order damp-
ing and the dotted line is for the Lorentz-Dirac equation. The laser
irradiance is 5.531022 W/cm2 with l0=10−12 cm and laser pulse
duration ofDt=2310−22 s.

FIG. 5. The trace of the electron motion in thex-px plane where
the electron is initially stationary and the laser is propagating in the
x direction before they interact. The solid line is for first order
damping and the dotted line is for the Lorentz-Dirac equation. The
laser irradiance is 5.531022 W/cm2 with l0=10−12 cm and laser
pulse duration ofDt=2310−22 s.
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experiments to have a sizer much smaller than the classical
electron radiussr ø2.8310−17 cm! red [16], we may be
able to study the electron field structure by performing such
an experiment with counter-propagating laser pulses and
high energy electrons. High irradiance lasers present a way
to study the radiation damping of electrons under strong
damping conditions. By going to very short wavelengths
such lasers could aid in the study of the electron field struc-
ture near the classical electron radius.
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